Home
| math | handbook
| dictionary | function | eq.
| graphics
| coding
| example
| help
| ?
| 中文
Input:
d((sin(x) * x^2) / (1 + tan(cot(x))))
Write:
`d((sin(x) * x^2) / (1 + tan(cot(x))))`
Compute:
$$\frac{d}{dx} (\frac {sin(x)}{1+tan(cot(x))})\ {x}^{2}$$
Output:
$$\frac{d}{dx} (\frac {sin(x)}{1+tan(cot(x))})\ {x}^{2}== (\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ sin(x)\ (1+{tan(cot(x))}^{2})\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2}$$
Result: $$(\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ sin(x)\ (1+{tan(cot(x))}^{2})\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2}$$
zoom graph by mouse wheel.
Home | list | about | wiki | forum | contact | donate | index | ? | 中文