Input:
dsolve(ds(x,t)=x-2y^2,ds(y,t)=2x^2-y)
Write:
`dsolve(ds(x,t)=x-2y^2,ds(y,t)=2x^2-y)`
Compute:
$$dsolve(\frac{dx}{dt} =x - 2\ {y}^{2},\frac{dy}{dt} =2\ {x}^{2} - y)$$
Output:
$$dsolve(\frac{dx}{dt} =x - 2\ {y}^{2},\frac{dy}{dt} =2\ {x}^{2} - y)== (\frac{-2}{3})\ {x}^{3}+x\ y-\frac{2}{3}\ {y}^{3}=C_1$$
Result: $$(\frac{-2}{3})\ {x}^{3}+x\ y-\frac{2}{3}\ {y}^{3}=C_1$$
zoom graph by mouse wheel.