Input:
dsolve(x(2,t)=x,y(2,t)=2x-y)
Write:
`dsolve(x(2,t)=x,y(2,t)=2x-y)`
Compute:
$$dsolve(x^{(2)}(t)=x,y^{(2)}(t)=2\ x - y)$$
Output:
$$dsolve(x^{(2)}(t)=x,y^{(2)}(t)=2\ x - y)== x=C_2\ exp(t)+exp((-C_1)-t), y=C_1\ cos(t)+2\ (\frac{1}{2}\ C_2\ exp(t)+\frac{1}{2}\ exp((-C_1)-t))+C_2\ sin(t)$$
Result: $$x=C_2\ exp(t)+exp((-C_1)-t), y=C_1\ cos(t)+2\ (\frac{1}{2}\ C_2\ exp(t)+\frac{1}{2}\ exp((-C_1)-t))+C_2\ sin(t)$$
zoom graph by mouse wheel.