Input:
pdsolve(ds(y,t)-ds(y,x)-ints(y,x,0.5)+3y-exp(x))
Write:
`pdsolve(ds(y,t)-ds(y,x)-ints(y,x,0.5)+3y-exp(x))`
Compute:
$$pdsolve(\frac{dy}{dt} -\frac{dy}{dx} -exp(x)-\int y\ \sqrt(dx)+3\ y)$$
Output:
$$pdsolve(\frac{dy}{dt} -\frac{dy}{dx} -exp(x)-\int y\ \sqrt(dx)+3\ y)== exp(x)+C_1\ exp(0.4096031188964844\ x)+C_1\ exp((-3)\ t+(-0.4999999999999998+0.8660254037844387i)\ x)$$
Result: $$exp(x)+C_1\ exp(0.4096031188964844\ x)+C_1\ exp((-3)\ t+(-0.4999999999999998+0.8660254037844387i)\ x)$$
zoom graph by mouse wheel.