Input:
pdsolve(ds(y,t)-ints(y,x)-y-exp(x))
Write:
`pdsolve(ds(y,t)-ints(y,x)-y-exp(x))`
Compute:
$$pdsolve(\frac{dy}{dt} - \int y\ dx - y - exp(x))$$
Output:
$$pdsolve(\frac{dy}{dt} - \int y\ dx - y - exp(x))== (\frac{-1}{2})\ exp(x)+C_1\ exp(\frac{1}{2}\ t-2.0\ x)$$
Result: $$(\frac{-1}{2})\ exp(x)+C_1\ exp(\frac{1}{2}\ t-2.0\ x)$$
zoom graph by mouse wheel.