Input:
pdsolve(ds(y,t)-ints(y,x,0.5)+2y-exp(x))
Write:
`pdsolve(ds(y,t)-ints(y,x,0.5)+2y-exp(x))`
Compute:
$$pdsolve(\frac{dy}{dt} -exp(x)-\int y\ \sqrt(dx)+2\ y)$$
Output:
$$pdsolve(\frac{dy}{dt} -exp(x)-\int y\ \sqrt(dx)+2\ y)== C_1\ exp((-t)+x)-psolution1(-1,-0.5,2,exp(x),y,t,x,1)$$
Result: $$C_1\ exp((-t)+x)-psolution1(-1,-0.5,2,exp(x),y,t,x,1)$$
zoom graph by mouse wheel.