Input:
pdsolve(ds(y,t,0.5)=2*ds(y,x)*y^2)
Write:
`pdsolve(ds(y,t,0.5)=2*ds(y,x)*y^2)`
Compute:
$$pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}=2\ \frac{dy}{dx} \ {y}^{2})$$
Output:
$$pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}=2\ \frac{dy}{dx} \ {y}^{2})== \sqrt {(\frac {(\frac{-1}{2})}{C_2+1.1283791670955126\ \sqrt{t}})\ (C_1+x)}\ and\ (-0.7071067811865476i)\ (\frac{1}{\sqrt{C_2+1.1283791670955126\ \sqrt{t}}})\ (\sqrt{C_1+x})$$
Result: $$\sqrt {(\frac {(\frac{-1}{2})}{C_2+1.1283791670955126\ \sqrt{t}})\ (C_1+x)}\ and\ (-0.7071067811865476i)\ (\frac{1}{\sqrt{C_2+1.1283791670955126\ \sqrt{t}}})\ (\sqrt{C_1+x})$$
zoom graph by mouse wheel.